3.2.10 \(\int \frac {x \sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx\)

Optimal. Leaf size=549 \[ -\frac {\left (\left (e-\sqrt {e^2-4 d f}\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )+2 d f (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (\left (\sqrt {e^2-4 d f}+e\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )+2 d f (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {(2 c e-b f) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f^2}+\frac {\sqrt {a+b x+c x^2}}{f} \]

________________________________________________________________________________________

Rubi [A]  time = 7.03, antiderivative size = 549, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {1019, 1076, 621, 206, 1032, 724} \begin {gather*} -\frac {\left (\left (e-\sqrt {e^2-4 d f}\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )+2 d f (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right )-b \left (e-\sqrt {e^2-4 d f}\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2-\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}+\frac {\left (\left (\sqrt {e^2-4 d f}+e\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )+2 d f (c e-b f)\right ) \tanh ^{-1}\left (\frac {4 a f+2 x \left (b f-c \left (\sqrt {e^2-4 d f}+e\right )\right )-b \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+b x+c x^2} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+\sqrt {e^2-4 d f} (c e-b f)-b e f-2 c d f+c e^2}}-\frac {(2 c e-b f) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f^2}+\frac {\sqrt {a+b x+c x^2}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x*Sqrt[a + b*x + c*x^2])/(d + e*x + f*x^2),x]

[Out]

Sqrt[a + b*x + c*x^2]/f - ((2*c*e - b*f)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[c]*f^
2) - ((2*d*f*(c*e - b*f) + (e - Sqrt[e^2 - 4*d*f])*(f*(b*e - a*f) - c*(e^2 - d*f)))*ArcTanh[(4*a*f - b*(e - Sq
rt[e^2 - 4*d*f]) + 2*(b*f - c*(e - Sqrt[e^2 - 4*d*f]))*x)/(2*Sqrt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 -
(c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2]*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f -
b*e*f + 2*a*f^2 - (c*e - b*f)*Sqrt[e^2 - 4*d*f]]) + ((2*d*f*(c*e - b*f) + (e + Sqrt[e^2 - 4*d*f])*(f*(b*e - a*
f) - c*(e^2 - d*f)))*ArcTanh[(4*a*f - b*(e + Sqrt[e^2 - 4*d*f]) + 2*(b*f - c*(e + Sqrt[e^2 - 4*d*f]))*x)/(2*Sq
rt[2]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]]*Sqrt[a + b*x + c*x^2])])/(Sqrt[2
]*f^2*Sqrt[e^2 - 4*d*f]*Sqrt[c*e^2 - 2*c*d*f - b*e*f + 2*a*f^2 + (c*e - b*f)*Sqrt[e^2 - 4*d*f]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1019

Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[(h*(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] - Dist[1/(2*f*(p + q + 1
)), Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Simp[h*p*(b*d - a*e) + a*(h*e - 2*g*f)*(p + q + 1) + (2*
h*p*(c*d - a*f) + b*(h*e - 2*g*f)*(p + q + 1))*x + (h*p*(c*e - b*f) + c*(h*e - 2*g*f)*(p + q + 1))*x^2, x], x]
, x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && Ne
Q[p + q + 1, 0]

Rule 1032

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2])
, x], x] - Dist[(2*c*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]

Rule 1076

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x
_)^2]), x_Symbol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)
/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b^2 - 4*a*c
, 0] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {x \sqrt {a+b x+c x^2}}{d+e x+f x^2} \, dx &=\frac {\sqrt {a+b x+c x^2}}{f}-\frac {\int \frac {\frac {b d}{2}+\frac {1}{2} (2 c d+b e-2 a f) x+\frac {1}{2} (2 c e-b f) x^2}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{f}\\ &=\frac {\sqrt {a+b x+c x^2}}{f}-\frac {\int \frac {\frac {b d f}{2}-\frac {1}{2} d (2 c e-b f)+\left (\frac {1}{2} f (2 c d+b e-2 a f)-\frac {1}{2} e (2 c e-b f)\right ) x}{\sqrt {a+b x+c x^2} \left (d+e x+f x^2\right )} \, dx}{f^2}-\frac {(2 c e-b f) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{2 f^2}\\ &=\frac {\sqrt {a+b x+c x^2}}{f}-\frac {(2 c e-b f) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f^2}-\frac {\left (2 f \left (\frac {b d f}{2}-\frac {1}{2} d (2 c e-b f)\right )-\left (\frac {1}{2} f (2 c d+b e-2 a f)-\frac {1}{2} e (2 c e-b f)\right ) \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f^2 \sqrt {e^2-4 d f}}+\frac {\left (2 f \left (\frac {b d f}{2}-\frac {1}{2} d (2 c e-b f)\right )-\left (\frac {1}{2} f (2 c d+b e-2 a f)-\frac {1}{2} e (2 c e-b f)\right ) \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+b x+c x^2}} \, dx}{f^2 \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {a+b x+c x^2}}{f}-\frac {(2 c e-b f) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f^2}+\frac {\left (2 \left (2 f \left (\frac {b d f}{2}-\frac {1}{2} d (2 c e-b f)\right )-\left (\frac {1}{2} f (2 c d+b e-2 a f)-\frac {1}{2} e (2 c e-b f)\right ) \left (e-\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e-\sqrt {e^2-4 d f}\right )+4 c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \sqrt {e^2-4 d f}}-\frac {\left (2 \left (2 f \left (\frac {b d f}{2}-\frac {1}{2} d (2 c e-b f)\right )-\left (\frac {1}{2} f (2 c d+b e-2 a f)-\frac {1}{2} e (2 c e-b f)\right ) \left (e+\sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{16 a f^2-8 b f \left (e+\sqrt {e^2-4 d f}\right )+4 c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )-\left (-2 b f+2 c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^2 \sqrt {e^2-4 d f}}\\ &=\frac {\sqrt {a+b x+c x^2}}{f}-\frac {(2 c e-b f) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {c} f^2}-\frac {\left (2 f (c d e-b d f)+\left (e-\sqrt {e^2-4 d f}\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e-\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e-\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2-(c e-b f) \sqrt {e^2-4 d f}}}+\frac {\left (2 f (c d e-b d f)+\left (e+\sqrt {e^2-4 d f}\right ) \left (f (b e-a f)-c \left (e^2-d f\right )\right )\right ) \tanh ^{-1}\left (\frac {4 a f-b \left (e+\sqrt {e^2-4 d f}\right )+2 \left (b f-c \left (e+\sqrt {e^2-4 d f}\right )\right ) x}{2 \sqrt {2} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}} \sqrt {a+b x+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {c e^2-2 c d f-b e f+2 a f^2+(c e-b f) \sqrt {e^2-4 d f}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.78, size = 496, normalized size = 0.90 \begin {gather*} \frac {4 f \sqrt {e^2-4 d f} \sqrt {a+x (b+c x)}-\sqrt {2} \left (\sqrt {e^2-4 d f}+e\right ) \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f-b \left (\sqrt {e^2-4 d f}+e-2 f x\right )-2 c x \left (\sqrt {e^2-4 d f}+e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f-b \left (\sqrt {e^2-4 d f}+e\right )\right )+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )-\sqrt {2} \left (\sqrt {e^2-4 d f}-e\right ) \sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {4 a f+b \left (\sqrt {e^2-4 d f}-e+2 f x\right )+2 c x \left (\sqrt {e^2-4 d f}-e\right )}{2 \sqrt {2} \sqrt {a+x (b+c x)} \sqrt {f \left (2 a f+b \sqrt {e^2-4 d f}+b (-e)\right )+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{4 f^2 \sqrt {e^2-4 d f}}-\frac {(2 c e-b f) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{2 \sqrt {c} f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x*Sqrt[a + b*x + c*x^2])/(d + e*x + f*x^2),x]

[Out]

-1/2*((2*c*e - b*f)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/(Sqrt[c]*f^2) + (4*f*Sqrt[e^2 - 4*
d*f]*Sqrt[a + x*(b + c*x)] - Sqrt[2]*(e + Sqrt[e^2 - 4*d*f])*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2
*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*ArcTanh[(4*a*f - 2*c*(e + Sqrt[e^2 - 4*d*f])*x - b*(e + Sqrt[e^2 - 4*d*f] -
 2*f*x))/(2*Sqrt[2]*Sqrt[c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]) + f*(2*a*f - b*(e + Sqrt[e^2 - 4*d*f]))]*Sqrt[a
 + x*(b + c*x)])] - Sqrt[2]*(-e + Sqrt[e^2 - 4*d*f])*Sqrt[f*(-(b*e) + 2*a*f + b*Sqrt[e^2 - 4*d*f]) + c*(e^2 -
2*d*f - e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(4*a*f + 2*c*(-e + Sqrt[e^2 - 4*d*f])*x + b*(-e + Sqrt[e^2 - 4*d*f] + 2*
f*x))/(2*Sqrt[2]*Sqrt[f*(-(b*e) + 2*a*f + b*Sqrt[e^2 - 4*d*f]) + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a
 + x*(b + c*x)])])/(4*f^2*Sqrt[e^2 - 4*d*f])

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.86, size = 646, normalized size = 1.18 \begin {gather*} \frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+\text {$\#$1}^2 b e+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e-4 \text {$\#$1} b \sqrt {c} d+a^2 f-a b e+b^2 d\&,\frac {\text {$\#$1}^2 c d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 c e^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+\text {$\#$1}^2 b e f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-\text {$\#$1}^2 a f^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+a^2 f^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+b^2 d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} c^{3/2} d e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-b c d e \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} b \sqrt {c} d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-a c d f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+a c e^2 \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-a b e f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )}{-2 \text {$\#$1}^3 f+3 \text {$\#$1}^2 \sqrt {c} e+2 \text {$\#$1} a f-\text {$\#$1} b e-4 \text {$\#$1} c d-a \sqrt {c} e+2 b \sqrt {c} d}\&\right ]}{f^2}+\frac {(2 c e-b f) \log \left (-2 \sqrt {c} \sqrt {a+b x+c x^2}+b+2 c x\right )}{2 \sqrt {c} f^2}+\frac {\sqrt {a+b x+c x^2}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(x*Sqrt[a + b*x + c*x^2])/(d + e*x + f*x^2),x]

[Out]

Sqrt[a + b*x + c*x^2]/f + ((2*c*e - b*f)*Log[b + 2*c*x - 2*Sqrt[c]*Sqrt[a + b*x + c*x^2]])/(2*Sqrt[c]*f^2) + R
ootSum[b^2*d - a*b*e + a^2*f - 4*b*Sqrt[c]*d*#1 + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 + b*e*#1^2 - 2*a*f*#1^2 - 2*Sq
rt[c]*e*#1^3 + f*#1^4 & , (-(b*c*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]) + a*c*e^2*Log[-(Sqrt[c]*x
) + Sqrt[a + b*x + c*x^2] - #1] + b^2*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*c*d*f*Log[-(Sqrt[
c]*x) + Sqrt[a + b*x + c*x^2] - #1] - a*b*e*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + a^2*f^2*Log[-(S
qrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] + 2*c^(3/2)*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*
b*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - c*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^
2] - #1]*#1^2 + c*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2 + b*e*f*Log[-(Sqrt[c]*x) + Sqrt[a +
b*x + c*x^2] - #1]*#1^2 - a*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(2*b*Sqrt[c]*d - a*Sqrt[c
]*e - 4*c*d*#1 - b*e*#1 + 2*a*f*#1 + 3*Sqrt[c]*e*#1^2 - 2*f*#1^3) & ]/f^2

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 10138, normalized size = 18.47 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x^2+b*x+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` f
or more details)Is 4*d*f-e^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x\,\sqrt {c\,x^2+b\,x+a}}{f\,x^2+e\,x+d} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*x + c*x^2)^(1/2))/(d + e*x + f*x^2),x)

[Out]

int((x*(a + b*x + c*x^2)^(1/2))/(d + e*x + f*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x \sqrt {a + b x + c x^{2}}}{d + e x + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(c*x**2+b*x+a)**(1/2)/(f*x**2+e*x+d),x)

[Out]

Integral(x*sqrt(a + b*x + c*x**2)/(d + e*x + f*x**2), x)

________________________________________________________________________________________